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Abstract. If instantons are introduced into the MIT bag model in such a way that the bag radii are allowed
to vary, the MIT bag interior can accommodate an instanton density which is by an order of magnitude
larger than in the case when the radii are fixed (although it is still significantly smaller than in the non-
perturbative QCD vacuum). The instanton contribution to the baryon mass shifts is also correspondingly
larger. The instanton-induced part of the scalar strangeness of the nucleon MIT bag is an order of magnitude
larger than found previously, within the linearized approximation. The decrease of the model radii (which
is associated with the increase of the instanton density) is very favorable from the standpoint of nuclear
physics.

1 Introduction

The characteristics of non-perturbative QCD make in-
tractable many calculations at low and intermediate ener-
gies. Effective quark models therefore retain their useful-
ness in numerous applications. For example, [1] used the
instanton-extended version [2]1 of the MIT bag model [3,
4] in one of many studies of strangeness in nucleons [6].
However, the approach of [2] contained the so-called lin-
earized approximation, amounting to freezing the baryon
radii in their original MIT values. In the present paper
we remove this approximation and calculate the effects
thereof on the baryon mass splittings, and also on the nu-
cleon strangeness results of [1]. We also explore whether
this enables the resolution or alleviation of a long-standing
inconsistency between the MIT bag model and nuclear
physics: the standard nuclear physics descriptions employ
independent nucleons, while the nucleon MIT bag radius
is too large for that [7].

The first approach to consider the instanton-induced
interaction within a bag model was due to Kochelev [8].
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into the original MIT bag model [3,4], was inspired by an anal-
ysis [5] made in the constituent quark model, which found that
an effective instanton interaction led to as satisfactory a de-
scription of the mass splittings of baryons as the conventional
approach using one-gluon exchange

It is nevertheless important to note that he considered his
own bag model [9], which is somewhat different from the
MIT one. As explained in detail in [2], that line of research
[9,8,10–14] is therefore rather different from the one in [2]
and in the present paper, where we stay as close as possible
to the original MIT bag model [3,4]. The only modifica-
tion with respect to the MIT model is the inclusion of the
instanton-induced interaction [2]. This inclusion is neces-
sary also inside the MIT bag if one allows for the non-
vanishing (even if small) probability of penetration of the
instanton liquid from the surrounding non-perturbative
QCD vacuum, into the “perturbative” MIT bag interior.
The instanton density n used in this effective instanton-
induced interaction inside the bag is of course reduced
with respect to the density in the non-perturbative QCD
vacuum: the smaller the probability of this penetration,
the larger the reduction. The reduced value of n appropri-
ate for the MIT bag interior comes out as a result of our
model calculation and fitting.

Besides defining how to incorporate instantons in the
MIT bag model and finding the baryon mass shifts caused
by the effective instanton-induced quark–quark interac-
tion, [2] explored the modification of the too large value
(required by the “instantonless” model fits [4]) of the
strong coupling constant αc used in the supposedly per-
turbative MIT bag interior. The conclusion of [2] was that
the change in αc was in the desired direction, i.e., it was
reduced, but only by about 6%, which was insufficient to
achieve improvement in the consistency of the perturba-
tive description of the bag interior. Actually, it turned
out that instanton effects should generally be small in the
MIT bag model, since the instanton (plus anti-instanton)
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density n appropriate for the MIT bag interior, was found
[2] to be very much depleted with respect to the instan-
ton density estimated (e.g., by [15–19]) for the true, non-
perturbative QCD vacuum. The corresponding instanton-
induced mass shifts were of the order of only a few MeV.
However, the analysis of [2] (and, consequently, of [1]) con-
tained an important simplifying assumption: it kept the
baryon radii “frozen” in the values obtained by DeGrand
et al. [4]. In this way, a full refitting of the bag model pa-
rameters (now also including the instanton density n in-
side the bag) was avoided. In fact, this highly non-linear
problem was thereby reduced to solving the four linear
equations for the four adjustable model parameters that
enter the energy functional linearly: αc, the volume-energy
density B, the zero-point energy parameter Z0, and a pa-
rameter new to the MIT bag model, namely, the instan-
ton density n. (The quark masses were also not allowed to
vary. Reference [2] adopted the quark masses of DeGrand
et al. [4] in order to be able to use the results of [4] and to
make a comparison with their results.) The linear equa-
tions determining the appropriate value of n and the new
values of αc, B, and Z0 were specified by demanding that
the model masses of the proton, neutron, ∆, and Ω− be
equal to the empirical masses after the inclusion of the
effective instanton-induced interaction. We will call the
approach of [2] the linearized approximation.

In this paper we go beyond this approximation, per-
forming a refitting of the baryon masses which allows their
radii to vary. It turns out that this leads to larger in-
stanton densities allowed inside the MIT bags, and corre-
spondingly to a stronger share of instantons in the energy
balance of the baryon bags, accompanied by a decreased
αc, as well as by acceptable, and for nucleons even highly
favorable [7,2], changes in the baryon radii. Most impor-
tant for the present paper is amending the results on the
nucleonic scalar strangeness obtained in [1]. On the one
hand, larger instanton densities now lead to increased con-
tributions of the instanton-induced interaction to the to-
tal scalar strangeness of the nucleon. On the other hand,
the basic MIT bag strangeness (8) found by Donoghue
and Nappi [20], if not far from its naive limit, may well
still represent the main contribution. If it does, the total
nucleon strangeness decreases with diminishing bag radii,
which are in turn associated with growing instanton den-
sities.

2 Refitting of the baryon bag parameters

Except for removing the linearized approximation, i.e., re-
placing it with the refitting where the bag radii are not
frozen any longer, the incorporation of the instanton ef-
fects in the MIT bag follows [2] closely. The same holds
also for other model details, such as the fixed model in-
puts, the non-strange and strange quark mass parameters
(mu = md = 0 and ms = 279 MeV, respectively) and
quark–antiquark (qq̄) condensate 〈0|q̄q|0〉=−(240 MeV)3.
Thus, to keep the present paper as concise as possible, we
refer to [2] for all model details and parameters, and to

[1] for the corresponding strangeness calculation. (For de-
tailed technicalities of the latter, [21] may also be found
helpful.)

Here we just recall that the effective instanton-induced
interaction LI, causing the instanton-induced mass shift
EB

I of the baryon B, is the sum of the one-, two-, and
three-body terms, denoted by LI

1, LI
2, and LI

3, respectively:

EB
I = 〈B| : −LI : |B〉 = 〈B| : −LI

1 − LI
2 − LI

3 : |B〉 , (1)

and is defined in detail in [2]. The explicit expressions for
the one- and two-body contributions (∆M

(1)
B and ∆M

(2)
B ,

respectively) are also given in [2].
Before proceeding, let us make two comments regard-

ing our choice of the instanton-induced interaction LI. It
was derived by Nowak et al. [18] in the framework of the
random instanton liquid model (RILM). They arrived at
the interaction corresponding to the well-known one of
Shifman, Vainshtein, and Zakharov (SVZ) [22], apart from
the effects of smearing over the size of an instanton. In
the limit of no smearing, it reproduces our chosen [2,1,21]
local LI, which is essentially the same as the SVZ interac-
tion [22]. Since the SVZ interaction is induced by a single
(anti-)instanton, our modeling misses multi-instanton ef-
fects. Their importance, however, was stressed in, e.g., [17,
19], putting in doubt the validity of the single-instanton
approximation. The caveat is that these effects can be im-
portant when baryon bags have diameters larger than the
average separation of (anti-)instantons, and this will turn
out to be the presently relevant situation (since we will
find instanton densities inside bags up to one third of the
QCD vacuum value of 1 fm−4). Nevertheless, as discussed
especially in [2], we should recall that this interaction was
introduced and used [2,1,21] with the aim of capturing the
intermediate-range (∼ 1

3 fm) QCD effects, and the inter-
action we adopted is suitable for that, since the average
instanton size is ρ ≈ 1

3 fm [15–18,23]. Hopefully, it may
capture the effects at ranges even a little beyond 1

3 fm,
since Nowak et al. [18] took into account the delocaliza-
tion of zero modes2. In keeping with the basic idea of the
MIT model, one assumes that really long range (i.e., con-
finement) effects are modeled well by the confining bag
boundary.

The second comment is devoted to clarifying our in-
clusion of the one-body term LI

1 into the bag model cal-
culations of the instanton-induced contribution (1) to the
baryon masses. The term LI

1 has in fact the form of a
mass term, and can be thought of as the self-energy, or
the effective mass that a quark acquires from the effective
interaction caused by the instanton liquid through which
quarks move. Now imagine that we are working in some
kind of constituent quark model where one from the start

2 Thus, Nowak et al. [18] took into account the insights of,
e.g., [17], concerning the importance of summing up a large
number of interactions with different instantons. The review
by Schafer and Shuryak still points out as useful their results
and the RILM approach in general, observing that interactions
among instantons (and hence their correlations) are important
but not dominant [19]
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uses effective constituent quark masses to parameterize
“dressing” by non-perturbative QCD. The self-mass part
of the instanton effects would in that case already be in-
cluded in the constituent mass parameters. Using LI

1 in
the baryon mass calculation would therefore be double-
counting, so in that case it must be dropped from (1). On
the other hand, if we employ some approach where one
uses the current, Lagrangian quark masses, like in the MIT
bag model used presently and in [2,1,21], LI

1 should be in-
cluded in the calculation on an equal footing with LI

2 and
LI

3. This procedure was criticized by Dorokhov [13] on the
grounds that in the bag model, the role of the quark con-
stituent mass is played by the single-quark kinetic energy
eigenvalue resulting from the boundary condition confin-
ing the quarks inside the bag. According to this view, the
quark non-perturbative dressing due to the LI

1 part of the
instanton-induced interaction would already be taken into
account by the linear bag boundary condition. However,
we do not accept this view because this boundary condi-
tion serves to incorporate confinement, prohibiting quark
separations larger than the bag diameter scale of the or-
der of some 2 fm, while instantons are not responsible for
confinement [24,25] (contrary to what was thought in the
early days of instanton physics). Admittedly, this argu-
ment is so far only qualitative in the sense that in the
model context it is not possible to delineate precisely be-
yond which scale confinement effects overwhelm instan-
ton effects. Nevertheless, the argument becomes stronger
and more precise if one remembers the discussion in the
previous passage: there, it was noted that the adopted
instanton-induced interaction approximates well the non-
perturbative QCD effects at intermediate ranges around
1
3 fm, but not much further than that, and certainly not
up to confinement scales of the order of the bag diameter.

As remarked above, the interaction LI is actually the
same as the well-known SVZ interaction [22], including
the (only seemingly different [18,26]) three-body term LI

3.
This term was in fact discussed in [2] because, at that
point, it was not clear whether the contribution of LI

3
vanished for Λ, as it did for other baryons. Therefore,
[2] avoided the need to compute the contribution from
the complicated-looking LI

3 by showing that it could con-
tribute only to the mass of the Λ and by omitting the
Λ from the analysis. However, it turns out that the mass
shift due to the three-body interaction, if non-zero, must
be small for the Λ [27]. (In an explicit evaluation one can
see that all terms in the LI

3-contribution would cancel in
the SU(3)-symmetric limit. This contribution slightly dif-
fers from zero only because the strange-quark wave func-
tions differ somewhat from the non-strange ones.) Neglect-
ing therefore this contribution to MΛ, the total instanton-
induced mass shift (1) consists of one- and two-body con-
tributions only [2]:

EB
I = 〈B| : −LI

1 − LI
2 : |B〉 ≡ ∆M

(1)
B + ∆M

(2)
B , (2)

for all baryons B, including the Λ. There is hence no need
to drop the Λ from the analysis, so in this respect, this
calculation is slightly more complete than in [2]. However,
when we did drop the Λ from the present fit in order to

check the effects thereof, the results were affected very
little.

Therefore, the only significant difference in modeling
with respect to [2] is that in the present paper we want to
perform a full refitting of the model parameters, including
the variation of the bag radii. Maybe some reader might
then object that for each baryon B, its bag radius would
become a new free parameter, and the number of fitting
parameters would become larger than the number of ex-
perimental baryon masses MB

exp to be fitted. Fortunately,
this is not so, because each radius RB of a bag in equilib-
rium must satisfy the pressure-balance condition. That is,
the equilibrium bag radius RB of the baryon B is fixed by
minimizing the bag model mass MB

bag,

dMB
bag

dRB
= 0 (B = N, Λ, Σ, Ξ, ∆, Σ∗, Ξ∗, Ω) , (3)

and is not a free, adjustable parameter like Z0, αc, B and
n.

The MIT bag energy functional MB
bag of the baryon B

now depends also on the instanton density n, because

MB
bag[RB, Z0, αc, B, n] = EB

Q +EB
0 +EB

M +EB
E +EB

V +EB
I

(4)

now contains the instanton contribution EB
I (1), in

addition to the kinetic energy of the confined quarks EB
Q,

the zero-point energy EB
0 , the color magnetic energy EB

M ,
the color electric energy EB

E , and the volume energy
EB

V . The expressions for these five latter contributions are
given in [4]. (In (4), the dependence of MB

bag on the quark
mass parameters mu, md, ms and the condensate 〈0|q̄q|0〉
is not indicated, as they are not adjustable parameters but
fixed model inputs.)

In the circumstances explained above, the most practi-
cal and numerically tractable way to perform the model fit
to the empirical baryon masses, is to pose it as the prob-
lem of minimization of the positive definite functional F :

F [{RB}, Z0, αc, B, n] ≡ FM + FR , (5)

FM ≡
∑
B

(MB
exp − MB

bag)
2 , (6)

FR ≡
∑
B

1
M2

(
dMB

bag

dRB

)2

, (7)

where both sums run over the baryons B in the ground-
state octet (N, Λ, Σ, Ξ) and decuplet (∆, Σ∗, Ξ∗, Ω).
Thus, note that in the present fitting procedure all baryon
masses enter on an equal footing, whereas [2], similarly to
[4], chooses some masses somewhat arbitrarily to fix the
parameters and predict the other masses.

In the functional F , the first sum, FM , represents the
deviation of the bag model masses MB

bag from the exper-
imental baryon masses MB

exp. The second sum, FR, is a
measure of the deviation from the situation of the per-
fectly satisfied pressure-balance condition. The role of the
constant M is just to ensure that both terms have the
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same dimension, and we choose the typical baryonic mass
scale of 1 GeV to fix its value: M = 1 GeV. (Of course,
there is some arbitrariness in the choice of the functional
F ; for example, we could replace M by MB

exp in each term
of the sum FR. However, we have checked that varying the
scale M does not influence our results significantly, giving
us confidence that this arbitrariness is not a problem in
practice.)

The functionals defined by (5)–(7), namely F , FM and
FR, all depend on the model parameters Z0, αc, B, n and
on the set of the bag radii {RB} of the octet and decuplet
baryons. The strict approach to the model fitting through
the functional minimization would be to pick the initial
values of the free parameters, Z

(0)
0 , α

(0)
c , B(0), n(0), and

find the equilibrium radii RB by minimizing the functional
FR to, ideally, FR = 0, where the conditions (3) would be
strictly satisfied. Then the functional FM should be cal-
culated. This two-step process should be repeated with
varied values of the free parameters over and over again
by some minimization routine (for example based on sim-
plex minimization) till FM is as close to zero as possible.
However, this two-step process, where FR would be min-
imized before each call to FM , is computationally rather
intractable in practice. Fortunately, it turns out that for
the degree of accuracy that is sensible to demand from
the MIT bag model (set by FM of the original fit [4]), it
is sufficient to perform the refitting by varying simultane-
ously Z0, αc, B, n and the set {RB} to minimize the joint
functional F . Nevertheless, one should accept only those
minimizations where FM is the overwhelming share, and
FR only a small part of F = FM + FR; otherwise the fit
to the experimental masses would be done away from the
equilibrium bag radii. Ideally, the aim would be F = 0, but
since it is not possible to model all experimental masses ex-
actly, one should look for such parameter values for which
F is sufficiently small. In the present model it is sensible
to demand F < 3×10−3 GeV2, since the original MIT bag
fit [4] gives FM = 3.2 × 10−3 GeV2.

The minimization of F by the simplex method [28],
which had already been proved as robust and reliable in
earlier applications [29–32], has turned out to be very suit-
able also in the present case.

3 Results and discussion

It is necessary to give some thought as to which outputs of
the minimization procedure can be accepted as solutions
to our problem. The present situation is different than in
[2], where the frozen radius approximation reduced the
problem to solving a set of linear equations, so that the
solution was unique once we chose which baryon masses
would be used to fix the parameters. In the present case,
the functional minimization finds many local minima of
the functional (5). In which of them the minimization will
end up depends on which part of the parameter space
one starts from. Moreover, many of these minima can
be acceptable in the sense of a sufficiently small value
of the minimized functional F . We thus face the prob-
lem of non-uniqueness of the solutions. Fortunately, the

smallness of the minimized functional F is not the only
criterion; clearly, a fit resulting in a good mass spectrum
would anyway be unacceptable if it also resulted in physi-
cally unacceptable values of the bag radii or fitting param-
eters. This must always be kept in mind, as the problem
was mathematically posed in such a way that it is possible
to get an excellent fit to the masses, but with the bag radii
and parameters devoid of any physical justification.

3.1 Practically instantonless bag

The first thing to check is the limit of the vanishing in-
stanton density n inside the bag. This is basically the case
of the pure MIT bag model except that our model fitting
is done by minimizing the functional (5). This is differ-
ent from the original MIT bag fitting procedure [4] where
the parameters B, Z0 and αc were fixed by singling out
three hadrons and constraining their model masses to be
the experimental ones. From the model standpoint, it is
very satisfying that for n = 0 inside the bag, our differ-
ent fitting procedure leads to the description of baryons
very similar to the original MIT bag fitting procedure [4].
In addition to that, we note that when we depart from
the limit of vanishing instanton density inside the bag
and finally allow n �= 0, the minimization of the func-
tional (5) leads, among various outcomes, also to several
solutions where the values of n are non-vanishing but ex-
tremely small, n � 10−6 GeV4. This is practically negligi-
ble in comparison with the density n0 ≈ 1.6 × 10−3 GeV4

= 1 fm−4 estimated reliably (e.g., see [15–18,23]) for the
non-perturbative QCD vacuum outside the bag. The re-
sulting baryon masses and radii (as well as values of the
variable model parameters) are very close to each other
in all these cases of very small n, and also very similar
to the pure MIT case (n = 0), as one would expect, al-
though all those cases are formally different solutions. It
is thus clear that they all describe very similarly (“prac-
tically uniquely”) the situations when n → 0. This shows
that non-uniqueness of the solutions is not a problem in
practice, and the same happens in the more interesting
cases with significant values of n, discussed in the next
subsection.

3.2 Appreciable instanton density inside the bag

Let us now discuss the first major interest of this paper:
the cases when instanton densities n inside the bag are
significantly different from zero. Indeed, in most cases we
obtained interesting solutions where the densities n inside
the bag are an order of magnitude larger than in the lin-
earized approximation [2], where3 n = 0.266 · 10−4 GeV4.
However, for all acceptable minimizations of the functional
(5), we find that they are still appreciably lower (at least

3 The dimensionless density ñ used in [2] and n are related by
n ≡ ñρ−4, where ρ is the average instanton radius. Through-
out, we have adopted the standard value ρ = 1/600 MeV−1 ≈
1/3 fm (e.g., see [15–18,23])
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Table 1. The fit for the input quark masses mu = md = 0, ms = 279 MeV and the quark-antiquark vacuum condensate
〈0|q̄q|0〉 = −(240 MeV)3. We display the separate energies EB

X (X = 0, V, Q, M, E, I) contributing to MB
bag, the mass of the

baryon bag, to be compared with the corresponding experimental baryon mass MB
exp in the first column. The output values of

the bag model parameters B, Z0, αc and n are given in the lowest part of Table 1. All the masses and energies are given in GeV,
and the bag radii RB in inverse GeV, while Z0 and αc are dimensionless

Baryon B MB
exp MB

bag RB EB
0 EB

V EB
Q EB

M EB
E EB

I

N 0.938 0.959 4.365 −0.526 0.176 1.404 −0.128 0.000 0.033
Λ 1.116 1.120 4.383 −0.524 0.178 1.557 −0.127 0.003 0.033
Σ+ 1.189 1.172 4.529 −0.507 0.197 1.513 −0.094 0.003 0.061
Ξ0 1.315 1.306 4.475 −0.513 0.190 1.688 −0.109 0.003 0.047
∆ 1.232 1.248 5.130 −0.448 0.286 1.195 0.109 0.000 0.107
Σ∗ 1.385 1.388 5.073 −0.453 0.277 1.370 0.096 0.003 0.095
Ξ∗ 1.533 1.526 5.027 −0.457 0.269 1.543 0.084 0.003 0.083
Ω− 1.672 1.661 4.978 −0.461 0.261 1.716 0.074 0.000 0.071

B1/4 = 0.150 GeV Z0 = 2.296 αc = 0.394 n = 0.512 · 10−3 GeV4

by the factor of 3 or more) than the non-perturbative vac-
uum density n0 ≈ 1 fm−4 = 1.6 · 10−3 GeV4. Therefore,
we do not get a description of baryons which would be
drastically different from the original MIT bag one [4],
but we do obtain the desirable decrease of αc which is
noticeably stronger than the corresponding decrease ob-
tained earlier in the linearized approximation [2]. (In the
case depicted in Table 1, αc is by 30% smaller than in [4].)
In the solutions with decreased αc, we also observe the de-
crease of the baryon radii {RB}. As mentioned above, this
is very desirable from the standpoint of nuclear physics,
as explained by, e.g., Brown et al. [7]. Namely, standard
nuclear physics descriptions favor the picture of nuclei as
made of independent nucleons interacting by effective bo-
son exchange, but the empirical sizes of nuclei indicate
that the “standard” MIT nucleon bags with RN ≈ 1 fm
are already somewhat too large [7] for that. For this rea-
son, we give in Table 1 the case with the smallest nucleon
radius for which we managed to achieve an acceptable
fit. Other physically acceptable solutions have somewhat
smaller n and somewhat larger radii. Table 2 gives a kind
of condensed overview of several representative fits; e.g.,
the last line in Table 2 summarizes Table 1, the case with
the highest n which leads to a fit acceptable by all cri-
teria. The general features of the acceptable fits are the
following:
(a) The values of the functional F are around 1.3 to 1.2×
10−3 GeV2 (out of which only less than a percent is FR).
This gives the rough limit on the accuracy of reproduc-
tion of the mass spectrum within the present model. The
average deviation from an experimental baryon mass is
11 MeV. In fact, the predictions for the masses of N and
Σ are the worst. They are too high for N and too low for
Σ by some 20 MeV. The other masses are within 10 MeV
from the experimental masses. (In the MIT fit [4], the N
mass belongs to those constrained to experimental values
to fix the model parameters, but then the Σ mass is too
low by 45 MeV.) Overall, our approach to fitting of baryon
masses gives noticeably smaller sum of squared deviations
from the empirical baryon masses, FM , than the original

Table 2. Brief overview of some typical fits. (The fit given in
Table 1 is one example of them.) The values of functional F in
the last column show the good quality of the fits. The interde-
pendence of the adjustable bag parameters (n, αc, B, Z0) and
the bag radii is summarily depicted utilizing the average octet
and decuplet radii, R

O
and R

D
, respectively

n × 103 αc B × 104 Z0 R
O

R
D

F × 103

[GeV4] [GeV4] [GeV−1] [GeV−1] [GeV2]

0.290 0.485 4.031 1.865 5.0 5.6 1.14
0.310 0.474 4.188 1.930 4.9 5.4 1.18
0.398 0.437 4.612 2.114 4.7 5.2 1.26
0.512 0.394 5.058 2.296 4.4 5.1 1.29

MIT bag fit [4] and the linearized approximation (where
FM = 3.5 × 10−3 GeV2) [2].

(b) Going beyond the linearized approximation and
thereby allowing the bag radii to vary leads to some sig-
nificant changes with respect to the results in linearized
approximation. Notably, Table 1 shows the instanton con-
tributions to baryon energies are an order of magnitude
larger than in the linearized approximation [2]. Such in-
stanton contributions are present not only in Table 1, but
in a large majority of the fits, since the instanton densities
in most of the presently obtained solutions are an order
of magnitude larger than n obtained in the linearized ap-
proximation [2]. Nevertheless, since the instanton contri-
butions to the bag masses are still much smaller than other
contributions (except EB

E), the general picture of baryons
is not drastically altered with respect to the original MIT
bag phenomenology [4].

(c) In most cases this relatively large n inside the bag
leads to the decrease of αc, although there are also some
fits with relatively large n where αc grows back close to
its MIT value [4]. Then, however, such a larger αc is also
accompanied by an excessive increase of the bag radii. In
particular, this yields a nucleon radius even larger than
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Table 3. Dependence of the scalar strangeness of the nucleon on the instanton density n,
or on the bag radius RN associated with this density. For comparison, we recall that in the
linearized approximation [1] the instanton-induced strangeness from LI

1 was 〈N |s̄s|N〉LI
1

=
0.035, whereas the contribution from LI

2 was 〈N |s̄s|N〉LI
2

= 0.023 (at RN = 5.00 GeV−1≈
1 fm). In the last column, the choice η = 0 maximizes the basic bag strangeness contribution
of [20]; this is nevertheless only the so-called naive bag model limit, and in fact η remains
undetermined. The fixed model inputs (mu, md, ms and 〈0|q̄q|0〉) are the same as in Table 1
and Table 2, and are discussed in detail in the main text

n × 103

[GeV4]

RN

[GeV−1]
〈N |s̄s|N〉LI

1
〈N |s̄s|N〉LI

2
〈N |s̄s|N〉LI

〈N |s̄s|N〉basic
(1 − η)

0.290 4.994 0.22 0.09 0.31 7.21
0.310 4.909 0.24 0.10 0.34 6.85
0.398 4.658 0.29 0.15 0.44 5.85
0.512 4.365 0.36 0.22 0.58 4.82

in the MIT case [4], so that such solutions must be dis-
carded as unacceptable from the point of view of nuclear
physics as explained above. The interdependence of the
model parameters and the baryon bag radii which mini-
mize F is such that αc decreases while Z0 and B increase
with the decrease of the bag radii. This is illustrated in
Table 2, which, for four different fits, displays the average
octet (O) and decuplet (D) radii, R

O
and R

D
, for four dif-

ferent fits. The notion of the average multiplet radii R
O

and R
D

is useful since the octet baryon radii are similar
to each other, and the decuplet baryon radii are similar to
each other. The decuplet radii are also some 10% larger
than the radii of the octet baryons.

3.3 Instanton-induced strangeness inside the bag

Inspection of [1] easily shows that going beyond the lin-
earized approximation, and the above effects thereof, does
not change the results of [1] on the vector, axial-vector and
pseudo-scalar strangeness of the nucleon bag: the instan-
ton-induced contributions to them are still vanishing.

In contrast to that, the instanton-induced scalar
strangeness is enhanced an order of magnitude over what
it was in the linearized approximation [2], following the
increase of the instanton density n. This is seen in Ta-
ble 3, which shows the dependence on the instanton den-
sity, or on the bag radius associated with this density, of
various scalar strangeness components of the nucleon. The
instanton-induced contributions due to LI

1 and LI
2, respec-

tively denoted by 〈N |s̄s|N〉LI
1

and 〈N |s̄s|N〉LI
2
, comprise

the overwhelming share of the total instanton-induced
contribution 〈N |s̄s|N〉LI . We do not display 〈N |s̄s|N〉LI

3
,

the contribution due to LI
3, as it contributes only to the

third decimal place.
Although our present interests are the instanton-

induced contributions, we should also comment on the
basic strangeness of the nucleon MIT bag, 〈N |s̄s|N〉basic
(found by Donoghue and Nappi [20]),

〈N |s̄s|N〉basic ≡ (η − 1)〈0|q̄q|0〉 4π

3
R3

N . (8)

It is the product of the nucleon bag volume VN = (4π/3)
R3

N and 〈0|q̄q|0〉, the expectation value of the q̄q scalar
condensate in the true, non-perturbative QCD vacuum,
but also of the factor η − 1 which has unfortunately re-
mained quantitatively undetermined. Its determination is
beyond the scope of the present paper. Let us just quote
[20] that η (0 < η < 1) is in general some decreasing
function of the bag radius, since RN → ∞ corresponds to
η → 0. The case η = 0 is called the naive bag model limit
and obviously maximizes the basic bag strangeness (8).
This limit was, for definiteness, the only case of the basic
bag strangeness 〈N |s̄s|N〉basic considered in [1]. Although
in the present paper even the η = 0 limit of 〈N |s̄s|N〉basic
is not so much larger than the (now increased) quantity
〈N |s̄s|N〉LI as was the case in [1], it is still larger by an
order of magnitude for all radii displayed in Table 3. The
most widely accepted value of the condensate, adopted
also in [2] and the present paper, 〈0|q̄q|0〉 = −(240 MeV)3,
leads to 〈N |s̄s|N〉basic considerably exceeding the empir-
ical value of the total scalar strangeness (determined by,
e.g., [33], from the σ-term estimated from the πN scatter-
ing data and the masses of Ξ, Σ and Λ),

〈N |s̄s|N〉 ≈ 2.8 . (9)

Of course, lower values of 〈0|q̄q|0〉 trivially decrease
〈N |s̄s|N〉basic. For example, the choice 〈0|q̄q|0〉 =
−(200 MeV)3, as in [1], amounts to reducing the values of
〈N |s̄s|N〉basic/(1−η) in Table 3 by the factor (200/240)3 =
1/1.728, but this still gives rather large values. Instan-
tons inside the bag help with that. Admittedly, (8) shows
clearly that 〈N |s̄s|N〉basic is not directly dependent on in-
stantons and their density n inside the bag, but there is
an indirect connection: first, the volume factor in (8) de-
creases with the radii as R3

N , and diminishing radii are
associated with increasing n. Second, 1 − η also falls with
RN . Thus, even if 〈N |s̄s|N〉basic in the original, instanton-
less MIT bag model would be too close to its (too large)
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naive value, this potential problem would now be alle-
viated (more strongly than R3

N ) by lower values of RN ,
occurring at higher n.

As already stressed, the most interesting effect of the
presently increased values of the instanton density n is
the considerable enhancement of the instanton-induced
scalar strangeness, and we would like to point out that
this enhancement is not due to a favorable choice of the
fixed input parameters mu, md, ms and 〈0|q̄q|0〉. In fact,
our adoption of the fixed input parameters of [2] and
[4] was motivated not only by the ease of comparison
with these papers. This choice is also suitable for stressing
that the present enhancement (of the instanton-induced
strangeness) is not an effect of the choice of the model
parameters. This is because the values of the quark mass
parameters and of the vacuum quark–antiquark (q̄q) scalar
condensate used in [2] and in obtaining all presently dis-
played results (mu = md = 0, ms = 279 MeV, 〈0|q̄q|0〉 =
−(240 MeV)3), actually lead to a smaller instanton-
induced scalar strangeness than those used in [1] (mu =
md = 8 MeV, ms = 200 MeV, 〈0|q̄q|0〉 = −(200 MeV)3).
That the latter choice [1] of these inputs gives (at a given
instanton density n) an even more enhanced instanton-
induced scalar strangeness than that in Table 3 is most
easily understood if one notes the role of the characteris-
tic pre-factors, denoted by Ff in [2,1], appearing in the
instanton-induced interaction LI.

The factor Ff pertaining to a flavor f (f = u, d, s),
is composed of the corresponding quark mass parameter
mf , the average instanton size ρ 	 1

3 fm [15–18,23], and
the q̄q condensate 〈0|qq|0〉, in the following way:

Ff ≡ 1
mfρ − 2π2

3 ρ3〈0|qq|0〉 , (f = u, d, s). (10)

Obviously, smaller values of mu, md, ms and 〈0|qq|0〉 will
increase the Ff , and vice versa.

Let us consider the concrete sets of input parameters,
those of [2,1]. Changing mu = md from 0 to 8 MeV actu-
ally does not have a significant influence on the instanton-
induced strangeness, since mu and md are anyway small
at the hadronic mass scale (where 8 MeV can be approxi-
mated by 0). Nevertheless, the decrease of ms from
279 MeV to 200 MeV is quite important for further in-
creasing the instanton-induced strangeness significantly
over the values in Table 3. In fact, the effect thereof is
comparable to the effect of the decrease of |〈0|qq|0〉| from
(240 MeV)3 to (200 MeV)3.

Besides the effect on the Ff , the change of quark
masses changes the quark wave functions, and, more im-
portantly, the quark energy denominators appearing in
the calculation of the nucleon strangeness (as can be seen
in [1]). This way, the decrease of ms from 279 MeV to
200 MeV still further increases the instanton-induced
strangeness. (Again, the increase of mu = md from 0 to
8 MeV is too small to have a significant influence.) The
effect of the quark energy denominators and wave func-
tions is not so clearly disentangled as the effect of the
Ff -factors, so an explicit calculation is needed to show
that the effect is of comparable magnitude. However, the

important thing for the present discussion is that this ef-
fect changes the nucleon strangeness in the same direction
as the Ff -factors.

4 Conclusion

To summarize, we first remark that we did not perform
a “first-principle”-type calculation of the probability of
penetration of the instanton liquid from the surrounding
non-perturbative QCD vacuum into the bag. Rather, we
performed model fits to the baryon masses and these fits
showed which values of the instanton densities can be ac-
commodated inside the MIT bag (in a physically accept-
able way) and what the effects thereof would be. In the
present paper, we went beyond the linearized approxima-
tion of [2], and the bag radii were allowed to vary in the
course of parameter fitting, which was performed so that
the radii had to satisfy the pressure-balance condition. In
this approach, the importance of the instanton-induced in-
teraction allowed to act inside the quark bag is increased
in every way, and not only for the baryon mass shifts, the
size of which follows the increase of the instanton density
inside the bag. We namely found that the MIT bag interior
can accommodate instanton densities an order of magni-
tude larger than found in the linearized approximation [2].
They grow faster than the inverse of the bag volume with
decreasing bag radii returned by the fitting procedure. The
growth of the instanton-induced scalar strangeness of the
nucleon is even slightly faster than that when the nucleon
radius falls. The instanton-induced part of the nucleon
strangeness is now an order of magnitude larger than the
instanton-induced strangeness found in the linearized ap-
proximation [1]. The quantity (8), considered as the basic
MIT bag contribution to the nucleon strangeness [20], re-
mains undetermined also in the present work, but we could
show that it must be smaller in the instanton-enriched
MIT bag than in the original MIT bag. This is good, be-
cause this quantity alone has the potential to overshoot
strongly the empirical value (9) of 〈N |s̄s|N〉. Also, it turns
out that allowing for the possibility of instanton densities
significantly different from zero inside the MIT bags now
enables the favorable up to 30% decrease of αc. More im-
portantly, it also enables the decrease of the nucleon MIT
bag radius by more than 10%, improving somewhat the
consistency of the MIT bag model with nuclear physics.

After so summarizing the concrete results of this pa-
per, we close by making a more speculative comment on
how our enabling substantial instanton liquid densities in-
side the MIT bag seems to improve the consistency of
the model. Let us first note that, contrary to some ear-
lier statements [34], Schafer [35,36] has recently shown
that the instanton liquid model, including the one we use,
is not necessarily in conflict with the expansion in large
Nc, the number of QCD colors. Then we recall an obser-
vation of Bardeen and Zakharov [37] concerning the Nc

scaling of the bag constant B. Inside hadrons, which can
be modeled by the bag model, the quark color fields most
probably suppress instantons and other non-perturbative
fluctuations. However, a smooth large-Nc limit seems to
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indicate [37] that the suppression of these fluctuations,
including instantons, is not very strong (in keeping with
relatively low values of B coming from phenomenological
fits). Our modification of the bag, containing considerable
instanton liquid densities inside, is obviously more consis-
tent with the Bardeen and Zakharov result [37] than the
original MIT model, where this suppression is complete.

Acknowledgements. The support of the Croatian Ministry of
Science and Technology contract 0119261 is gratefully acknowl-
edged.

References
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